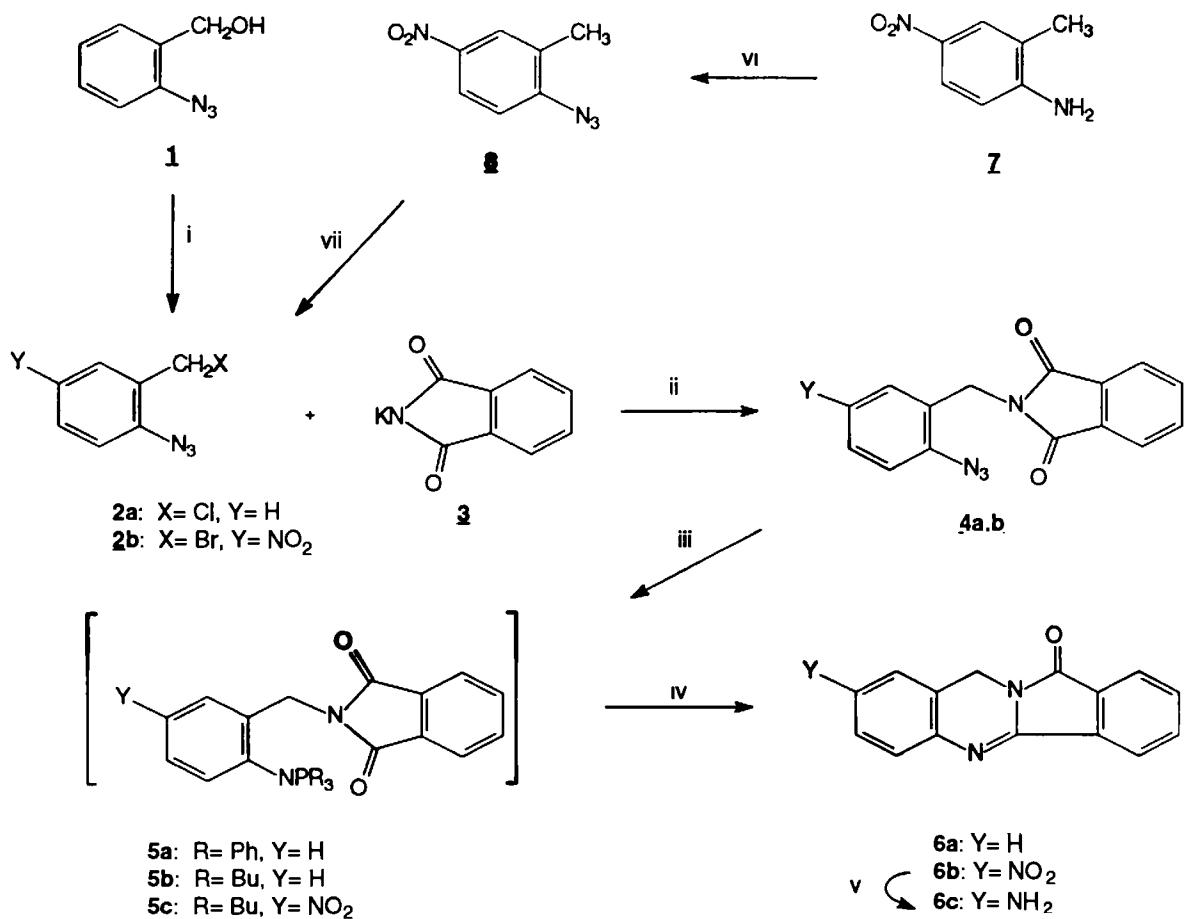


A FACILE SYNTHESIS OF ANTITUMOR AGENT BATRACYLIN VIA INTRAMOLECULAR AZA-WITTIG REACTION


Shoji Eguchi* and Seiki Goto

Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-01, Japan

Abstract : A facile synthesis of antitumor agent Batracyclin (NSC-320846), 8-aminoisoindolo[1,2-b]-quinazolin-12(10H)-one by intramolecular aza-Wittig methodology is reported.

The aza-Wittig methodology in heterocyclic synthesis has been growing quite rapidly in recent years, however, application to synthesis of various types of ring systems seems to be yet a challenging problem, because the cyclization reactivity in the intramolecular version is governed by many factors such as ring-size, substituents on P and N, and carbonyl groups (1). We have reported recently novel and efficient route for synthesis of oxazoles (2), imidazolinones (3a), iminolactams (4), quinazolinones (3,5), and 1,4-benzodiazepinones (6) via intramolecular aza-Wittig reactions. In this communication we wish to report a facile synthesis of dihydroquinazoline ring system by a consecutive Staudinger/aza-Wittig reaction of *N*-(*o*-azidobenzyl)phthalimides using triphenylphosphine or tributylphosphine, and application to a facile synthesis of antitumor agent Batracylin (NSC-320846) 6c (7).

The reaction of *o*-azidobenzyl chloride 2a prepared from the known azidoalcohol 1 (8) with potassium phthalimide 3 in DMF at 55 °C for 1 h gave the azido precursor 4a in 96% yield as a faintly yellowish crystal after usual work up and flash chromatography on a silica gel column (hexane/AcOEt, 4/1) (Scheme). The reaction of 4a with triphenylphosphine (1.1 equiv.) in dry xylene at room temperature for 5 h proceeded cleanly to generate iminophosphorane 5a via the Staudinger reaction but the cyclization via the intramolecular aza-Wittig reaction was very sluggish as judged from TLC. By heating to 90 °C for 9 h, however, the cyclization was completed to afford 10,11-dihydroiso-indolo[1,2-b]quinazolin-12-one 6a quantitatively after flash chromatography (silica gel, hexane/AcOEt, 2/1) as a yellowish crystal. The same reaction of 4a with tributylphosphine (1.1 equiv.) in dry benzene proceeded more rapidly and after

Scheme

12 h at room temperature (ca. 20-25 °C), **6a** was obtained in 97% isolated yield. Above results confirmed that the fused dihydroquinazoline ring could be synthesized efficiently in one-pot via the consecutive Staudinger/aza-Wittig reaction.

We applied this methodology to an improved synthesis of the well known synthetic antitumor agent Batracylin (NSC-320846) **6c** (7). Commercially available 2-methyl-4-nitroaniline **7** was converted to

azide **8** (87%) by the standard procedure, and benzylic bromination of **8** with NBS in dry benzene gave azidobenzyl bromide **2b** in 72% yield as a brownish solid. The reaction of **8** with potassium phthalimide in DMF at 80 °C for 6 h gave **4b** in 70% yield as a yellowish crystal after flash chromatography (silica gel, hexane/AcOEt, 2/1). Treatment of **4b** with tributylphosphine (1.1 equiv.) in dry xylene for 12 h at 140 °C afforded **6b** (86%) as a yellowish crystal after usual work up. Such heating was required for this cyclization because the electron withdrawing nitro substituent at para-position to the imino group diminished reactivity of the imino phosphorane. Reduction of the nitro group with ammonium formate and 10% Pd-C in CH₂Cl₂-MeOH afforded amino derivative, Batracyclin **6c** in 98% yield as a yellowish solid which was characterized by spectral and analytical data (Scheme).

The known synthetic routes to Batracylin use a) thermal condensation of 2,5-diaminobenzylamine with phthalic anhydride (56%) (9), and b) acid catalyzed cyclization of N-[2-ethoxycarbonylamino-5-acetylaminobenzyl]phthalimide in conc. H₂SO₄ at 100 °C (95%) (10). Compared with these two known methods, present synthesis provides a new convenient route to Batracylin and fused dihydroquinazoline derivatives from readily available precursors.

Satisfactory spectroscopic and analytical data have been obtained for all compounds:

4a: mp 184–186°C; ¹H NMR (CDCl₃, 200 MHz) δ 7.92–7.70 (m, 4H), 7.36–7.03 (m, 4H), 4.86 (s, 2H); MS(EI) m/z(%) 278(M+, 19), 250(50), 249(64), 104(100).

6a: mp 186.5–188.0°C; ¹H NMR(CDCl₃, 200 MHz) δ 8.10–7.17(m, 8H), 5.01 (s, 2H); MS(EI) m/z(%) 234 (M+, 65), 233(100).

2b: mp 55–58°C; ¹H NMR (CDCl₃, 200 MHz) δ 8.30(dd, 1H, J=0.4, 2.6Hz), 8.24 (dd, 1H, J=2.6, 8.6Hz), 7.30 (d, 1H, J=8.6Hz), 4.48 (s, 2H); MS(EI) m/z(%) 256 (M+, 13), 230(21), 149(100).

4b: mp 184–188°C(dec.); ¹H NMR(CDCl₃, 200 MHz) δ 8.22 (dd, 1H, J=2.6, 8.8Hz), 8.08 (d, 1H, J=2.6Hz), 7.29 (d, 1H, J=8.8Hz), 7.94–7.76 (m, 4H), 4.89 (s, 2H); MS(EI) m/z(%) 323 (M+, 10), 295(40), 104(100).

6b: mp 283–287 (AcOH); ¹H NMR (CDCl₃, 500 MHz) δ 8.21 (dd, 1H, J=2.7, 8.5Hz), 8.10–8.08 (m, 2H), 7.96–7.94 (m, 1H), 7.80–7.73 (m, 2H), 7.61 (d, 1H, J=8.5Hz), 5.08 (s, 2H); MS(EI) m/z(%) 279 (M+, 100).

6c: mp 244–247°C, lit. 287°C, lit. 287–288°C(16), 270°C(dec.)(17); ¹H NMR (CDCl₃, 500 MHz) δ 8.02 (d, 1H, J=7.5Hz), 7.90 (d, 1H, J=7.5Hz), 7.69 (ddd, 1H, J=7.5, 7.5, 1.0Hz), 7.63 (ddd, 1H, J=7.5, 7.5, 1.0Hz), 7.32 (d, 1H, J=8.5Hz), 6.63 (dd, 1H, J=8.5, 2.5Hz), 6.50 (d, 1H, J=2.5Hz), 4.92 (s, 2H), 3.86 (s, 2H, NH₂); MS(EI) m/z(%) 249 (M+, 85), 248 (100).

Acknowledgements. Support by a Grant-in-Aid for Scientific Research (No. 04403017) from the Ministry of Education, Science and Culture of Japan is gratefully acknowledged.

References and Notes

- (1) For recent reviews, see
 - a) J. Barluenga and F. Palacios, *Org. Prep. Proc. Int.* **23**, 1 (1991).
 - b) Yu. G. Gololobov and L. F. Kasukhin, *Tetrahedron* **48**, 1353 (1992).
 - c) S. Eguchi, Y. Matsushita, K. Yamashita, *Org. Prep. Proc. Int.* **24**, 209 (1992).
 - d) N. I. Gusar, *Russian Chem. Rev.* **60**, 146 (1991).
- (2) H. Takeuchi, S. Yanagida, T. Ozaki and S. Eguchi, *J. Org. Chem.* **54**, 431 (1988).
- (3) a) H. Takeuchi, S. Hagiwara and S. Eguchi, *Tetrahedron* **45**, 6375 (1989).
b) H. Takeuchi and S. Eguchi, *Tetrahedron Lett.* **30**, 3313 (1989).
- (4) S. Eguchi and H. Takeuchi, *J. Chem. Soc., Chem. Commun.* 602 (1989).
- (5) S. Eguchi, H. Takeuchi and Y. Matsushita, *Heterocycles* **33**, 153 (1992).
- (6) K. Yamashita, Y. Matsushita and S. Eguchi, *Synlett* 295 (1992).
- (7) a) J. Plowman, K. D. Pauli, G. Atassi, S. D. Harrison, Jr., D. J. Dykes, H. J. Kabbe, V. L. Narayanan and O. C. Yoder, *Invest. New Drugs* **6**, 147 (1988).
b) A. M. El-Hawari, M. D. Stedham, M. L. Stoltz, B. M. Maldinger, L. K. Brown, "Preclinical Toxicologic Evaluation of BAYH 2049 (NSC 310846) in CD2F1 Mice, Fischer 344 Rats and Beagle Dogs", National Cancer Institute, Bethesda, MD, *NCI Report*, Nov. 1, 1987;
c) V. Stella, L. Al-Razzak and H. J. Kabbe, *Eur. Pat. Appl.* 18 (1990); *Chem. Abstr.* **113**, 191975f (1990).
- (8) M. A. Ardakani, R. K. Smalley and R. M. Smith, *J. Chem. Soc., Perkin Trans. 1* 2501 (1983).
- (9) H. J. Kabbe, *Justus Liebigs Ann. Chem.* 398 (1978).
- (10) J. Rosevear and J. F. K. Wilshire, *Aust. J. Chem.* **43**, 339 (1990).

Received May 29, 1994